Пластиды содержащие хлорофилл называются. Строение растительной клетки

Часто перегорают лампочки

Это бесцветные или окрашенные тельца в протоплазме растительных клеток, представляющие собой сложную систему внутренних мембран (мембранные органеллы) и выполняющие различные функции. Бесцветные пластиды называют лейкопластами , различно окрашенные (желтого, оранжевого или красного цвета) - хромопластами , зеленые - хлоропластами . В клетке высших растений содержится около 40 хлоропластов в которых происходит фотосинтез . Они, как уже было сказано, способны к автономному размножению, не зависящему от деления клетки. Размеры и форма митохондрий и хлоропластов, наличие в их матриксе кольцевых двухцепочных ДНК и собственных рибосом делают эти органеллы похожими на бактериальные клетки. Существует теория симбиотического происхождения эукариотической клетки , согласно которой предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.

Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.

Предшественниками пластид являются пропластиды , мелкие, обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов . Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами . Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды . В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид (см. выше) - хлоропласты , хромопласты и лейкопласты . Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.

Пластиды - относительно крупные образования клетки. Самые большие из них - хлоропласты - достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами . Лейкопласты и хромопласты могут иметь различную форму.

Основная функция хлоропластов - фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу , точнее - нескольким его модификациям. Световые реакции фотосинтеза осуществляются преимущественно в гранах , темновые - в строме

Органоиды общего значения, имеющие двумембранный принцип строения. Встречаются только в клетках растений. Впервые пластиды были описаны еще Антонио ван Левенгуком в 1676 году.

Виды:
1) хлоропласты – зеленые пластиды, содержащие в большом количестве пигмент хлорофилл, а также каротиноиды;
2) хромопласты – красно-желтые пластиды, содержащие только пигменты из группы каратиноидов (каротин и ксантофилл);
3) лейкопласты – бесцветные пластиды.

Пигменты фотосинтеза: основными фотосинтетическими пигментами у высших растений и зеленых водорослей являются:

♦ Хлорофилл – А (зелено-голубой) = C55H72O5N4Mg;

♦ Хлорофилл – В (желто-зеленый) = C55H70O6N4Mg;

Каротиноиды:

♦ Каротин (оранжево-красные) = С40Н56;

♦ Ксантофилл (желтые) = С40Н56О2.

В процессе фотосинтеза эти пигменты способны поглощать электромагнитные волны только видимого света.

Оба хлорофилла – А и В – интенсивно аккумулируют лучи красного спектра и частично – голубого и фиолетового. Они не способны поглощать излучение зеленого спектра, поэтому такие волны они отражают и визуально кажутся зелеными пигментами. Каротиноиды поглощают лучи голубого, зеленого и фиолетового спектра. Каротины отражают «оранжевые лучи», поэтому кажутся оранжевыми включениями, ксантофиллы отражают излучение желтого спектра, следовательно, они – желтые пигменты. При интенсивном освещении каротиноиды защищают молекулы хлорофилла от возможного фотоокисления.

Строение хлоропласта

Форма: дисковидная.

Размеры: ширина 2 – 4 мкм.

1 – наружная мембрана;
2 – межмембранное пространство;
3 – внутренняя мембрана;
4 – тилакоиды;
5 – граны;
6 – пластоглобулы;
7 – ДНК;
8 – рибосомы;
9 – матрикс

Структура хлоропластов: хлоропласт отграничен двумя мембранами, а внутри находится студенистое вещество – строма. Наружная мембрана гладкая, внутренняя образует много складок, напоминающих стопки монет – граны.

В гранах заключены пигменты, акцепторы и доноры электронов, принимающие участие в световой фазе фотосинтеза, в ходе которой происходит реакция фотофосфорилирования и образуется АТФ. Кроме того, продуктами световой фазы являются: О2 и Н2О, НАДФ Н2.

Как и в митохондриях, в хлоропластах создаются два пространства: первое называется межмембранным – около 20 – 30 нм, оно заполнено водянистым содержимым. Второе, отграниченное внутренней мембраной, носит название «строма». В строме располагаются собственная ДНК, рибосомы, белки-ферменты, которые принимают непосредственное участие в темновой фазе фотосинтеза. Продуктом темновой фазы является глюкоза – С6Н12О6 .

Пластиды, как и митохондрии, способны удваиваться, имеют собственный аппарат по синтезу белка, следовательно, являются полуавтономными органоидами растительных клеток.

Пластиды обладают функциональной пластичностью и способны к видоизменениям: лейкопласты → хлоропласты → хромопласты. Лейкопласты можно считать предшественниками хлоропластов.

Хлоропласты – это активный фотосинтетический аппарат клетки.

Хромопласты представляют собой неактивные дегенерирующие пластиды.

Функции:

♦ хлоропласты играют активную роль в первичном синтезе углеводов (синтезе глюкозы), который называется фотосинтезом. Иногда принимают участие во вторичном – синтезе крахмала. Широко представлены в клетках зеленых органов растений (листья, молодые стебли, нераспустившиеся бутоны).

♦ лейкопласты – эти пластиды широко представлены в клетках подземных органов растений (корни, клубни, луковицы и др.), так как они выполняют запасающую функцию.

♦ хромопласты обнаруживаются в клетках лепестков цветов, созревших плодов. Создавая яркую окраску, они способствуют привлечению насекомых для опыления цветков, животных и птиц для распространения плодов и семян в природе.

Пластиды – это , входящие в структуру растительной клетки. Они хорошо видны под микроскопом, содержатся в растениях. Исключение составляют одноклеточные водоросли, бактерии и грибы.

В органеллах содержится генетический код, они способны воспроизводить себе подобных путем синтеза ДНК, белков. Роль и функции пластид в клетке определяется их строением. Они способны накапливать питательные вещества, выступать в роли депо. Отдельные виды пластид выполняют функцию фотосинтеза под воздействием энергии света.

Навигация по статье

Виды

В зависимости от погодных условий, фазы роста в клетках растений находится до трех типов пластид. Они представлены в таблице.

Название пластид Окраска В какой части растения Функции Что содержат
бесцветные

прозрачные

подземная часть запасник питательных веществ Крахмал

ферменты

зеленые стебель, листва, незрелый плод фотосинтез питательных веществ хлорофилл
оттенки:

оранжевого

красного

лепестки бутона

корнеплоды

листья в период листопада

привлечение

опылителей

распространителей семенного материала

Каротиноиды

антоциан

ксантофилл

ферменты

Среди этих видов пластид нет четких разделений. Они схожи по строению, способны к трансформации:

  • лейкопласты под воздействием света перерождаются в хлоропласты;
  • хлоропласты становятся хромопластами под воздействием погодных факторов (длины светового дня, температуры);
  • в лабораторных условиях хромопласты вновь зеленеют, становятся хлоропластами;
  • хлоропласты преобразуются в лейкопласты (листья отпускают корни в воде).

Строение пластид

Размер органоидов небольшой, от 3 до 10 микрон. Обычно они имеют круглую или овальную форму, выпуклые сверху, снизу.

Строение и функции пластид в разных фазах роста меняются.

Большинство имеют две мембраны:

  • внешняя (оболочная):
  • внутренняя (погруженная в стромы).

У некоторых высокоорганизованных растений в строении пластид до четырех мембранных перегородок. За счет мембран формируются:

  • тилакоиды – своеобразные отсеки различного строения;
  • граны – столбчатые или цепочные скопления тилакоидов;
  • ламелы – тилакоиды удлиненной формы.

Строма – вязкое содержимое, схожее в строении пластид.

Хлоропласты

Зеленые органоиды по строению встречаются различной формы, выделяют:

  • овальные;
  • спиралевидные;
  • лопастные;
  • эллипсоидные.

Важный компонент стромы – хлорофилл, необходимый для фотосинтеза.

В сложных пластидах элементы строения: белки, жиры, пигменты, ДНК, РНК.

Хромопласты

Двояковыпуклые, имеют различное строение:

  • трубчатое;
  • сферическое;
  • кубическую;
  • кристаллообразную.

Хромопласты в структуре содержат зерна крахмала. В них полностью разрушен зеленый пигмент, сохраняются другие питательные компоненты хлоропласта.

Лейкопласты

По строению и составу стромы подразделяются на:

  • амилопласты – запасники крахмала, при необходимости они трансформируются в моносахара;
  • элайопласты (липидопласты) они содержат жиры;
  • протеинопласты – кладовые белка.

По форме бывают в виде овала или эллипса.

Функции пластид

Первоначально формируются хлоропласты и лейкопласты. Роль этих пластид – фотосинтез, производство веществ, входящих в состав растительных клеток. Под воздействием света происходит четкое деление по виду органоидов и их функции.

В клетках высокоорганизованных видов растений содержится разное число органоидов. Их бывает 10, иногда количество достигает 200 единиц. В период похолоданий в листьях начинается синтез определенных пигментов. За счет этого строение органоида меняется.

Концентрация, состав красителя в плодах растений зависит от ДНК-кода. Цветные пигменты становятся видны после разрушения хлорофилла. Он боится низких температур. Растение готовится к зимнему периоду. Роль хромопластов – привлекающая и накопительная. Жиры, ферменты, белки, изначально содержащиеся в лейкопластах, накапливаются в процессе роста и спелости.

Значение хлоропластов

Эти органоиды отвечают функцию фотосинтеза, развитие клеток. Они ступенчато синтезируют глюкозу из двуокиси азота и воды. Реакция протекает с выделением кислорода. Процесс происходит за счет хлорофилла – по компонентному составу это углеводород. Высвобождая электрон под воздействием света, он меняет функцию, становится восстановителем.

Функции хромопластов

В процессе пучкования структура органоидов меняется. В хромопластах образуются пластоглобулы – скопления питательных веществ. Изменяются, разрушаются мембраны, клетка уплотняется. Внутреннее строение влияет на функции пласта: окраска становится более привлекательной, яркой за счет роста концентрации пигмента из-за разрушения мембранного строения органоида.

Роль лейкопластов

Функции подземной части растения зависят от разновидности лейкопласта. В зависимости от ДНК-кода, структура пластов изменяется. Функции клетки меняются, это зависит от компонентного состава – количества жиров, белков, сахаров, крахмала формирующего плода. По форме в основном круглые, реже овальные. Это обусловлено строением клетки эукариотического вида.

Пигменты пластид

В структуру клеточных органоидов входят три группы пигментов:

  • хролофилл – магний-порфириновые белковые комплексы хромопротеидов, придающие листьям, стволу зеленую окраску;
  • каротиноид – красящий пигмент, схожий с ретинолом (витамин А), в зависимости от концентрации обретают оранжевую или красноватую окраску;
  • ксантофилл по сути – окисленный каротин, содержится вместе с р-каротином, имеет такие же функции;
  • фикобилинпротеиды по компонентной структуре схожи с желчными пигметно-белковыми соединениями. К ним относятся: синие фикоцианины, придающие окраску плодам; красно-бордовые фикоэритрины.

Происхождение пластид

По одной гипотезе они возникли из цианобактерий. Позже возникла теория природного симбиогенеза бактерий, в состав которых входит хлорофилл, и пластидообразных микроорганизмов. Так объясняли появление митохондрий от эукариот.

Внимание ученые уделяли пигментному строению растительных клеток, позже ушли от этой версии. Появилась гипотеза возникновения пластид Archaeplastidae от зеленой водоросли и цианобактерии. Позже, благодаря симбиозу, зародились цветные простейшие водоросли. Они схожи по строению пластидами клеток:

  • содержится хлорофилл;
  • обнаружены пигментные включения;
  • мембранная структура.

Какого цвета могут быть пластиды?

Если рассматривать растение целиком, выделяется три цветовых гаммы:

  • желтые, оранжевые, красные пластиды расположены в цветках, плодах, корнеплодах, реже – листьях, стволе;
  • интенсивность окраски зависит от концентрации пигмента каратиноида;
  • зеленые органоиды – хлоропласты, они участвуют в процессе фотосинтеза; способны трансформироваться в хромопласты различной окраски или бесцветные лейкопласты.

Цвет пластид взаимосвязан с их функциональностью. Какого цвета будет органоид цветка, плода, корнеплода, зависит от модели ДНК. Информация воспроизводится в период роста растения.

Пигментация цветка привлекает внимание насекомых, участвующих в медосборе, происходит опыление. Яркий окрас плодов служит сигналом созревания семян, косточек для животных. Они распространяют семенной материал по обширной территории.

Со школьной скамьи. В курсе ботаники говорится, что в растительных клетках пластиды могут быть разных форм, размеров и выполняют в клетке различные функции. Эта статья напомнит о структуре пластид, их видах и функциях тем, кто давно окончил школу, и будет полезна всем, кто интересуется биологией.

Строение

На картинке внизу схематически представлено строение пластидов в клетке. Независимо от ее вида, у нее есть внешняя и внутренняя мембрана, выполняющие защитную функцию, строма - аналог цитоплазмы, рибосомы, молекула ДНК, ферменты.

В хлоропластах присутствуют особые структуры - граны. Граны формируются из тилакоидов - структур, похожих на диски. Тилакоиды принимают участие в и кислорода.

В хлоропластах в результате фотосинтеза формируются крахмальные зерна.

Лейкопласты не пигментированы. В них не присутствуют тилакоиды, они не принимают участия в фотосинтезе. Большая часть лейкопластов сконцентрирована в стебле и корне растения.

Хромопласты имеют в своем составе липидные капли - структуры, содержащие липиды, необходимые для снабжения структуры пластид дополнительной энергией.

Пластиды могут быть разных цветов, размеров и форм. Размеры их колеблются в пределах 5-10 мкм. Форма обычно овальная или круглая, но может быть и любой другой.

Виды пластид

Пластиды могут быть бесцветными (лейкопласты), зелеными (хлоропласты), желтыми или оранжевыми (хромопласты). Именно хлоропласты придают листьям растений зеленую окраску.

Другая разновидность отвечает за желтую, красную или оранжевую окраску.

Бесцветные пластиды в клетке выполняют функцию хранилища питательных веществ. В лейкопластах содержатся жиры, крахмал, белки и ферменты. Когда растение нуждается в дополнительной энергии, крахмал расщепляется на мономеры - глюкозу.

Лейкопласты при определенных условиях (под действием солнечного света или при добавлении химических веществ) могут превращаться в хлоропласты, хлоропласты преобразуются в хромопласты, когда хлорофилл разрушается, и в окраске начинают преобладать красящие пигменты хромопластов - каротин, антоциан или ксантофилл. Это превращение заметно осенью, когда листья и многие плоды меняют цвет из-за разрушения хлорофилла и проявления пигментов хромопластов.

Функции

Как говорилось выше, пластиды могут быть разными, и их функции в растительной клетке зависят от разновидности.

Лейкопласты служат в основном для хранилища питательных веществ и поддержания жизнедеятельности растения за счет способности запасать и синтезировать белки, липиды, ферменты.

Хлоропласты играют ключевую роль в процессе фотосинтеза. При участии сконцентрированного в пластидах пигмента хлорофилла происходит преобразование углекислого газа и молекул воды в молекулы глюкозы и кислорода.

Хромопласты благодаря яркой окраске привлекают насекомых для опыления растений. Исследование функций этих пластид до сих пор продолжается.

Зрительные пигменты

Зрительные пигменты

Зрительные пигменты сконцентрированы в мембранах наружных сегментов. Каждая палочка содержит около 108 молекул пигмента. Они организованы в несколько сотен дискретных дисков (около 750 в палочке обезьян), которые не связаны с наружной мембраной…

Изучение сине-зеленых водорослей, прибрежно-водной растительности и класса насекомые

Отдел Сине-зеленые водоросли. Особенности организации, жизненные формы, пигменты, жизненный цикл

водоросль гербаризация растительность плавунец В названии отдела (от греч. cyanos- синий) отражена характерная особенность этих водорослей — окраска таллома, связанная с относительно высоким содержанием синего пигмента фикоцианина…

Пластиды и их пигменты. Выделительные системы растений

I. ПЛАСТИДЫ И ИХ ПИГМЕНТЫ, ФОТОСИНТЕЗ, НЕОБХОДИМЫЕ ДЛЯ НЕГО УСЛОВИЯ, ДЕЛЕНИЕ КЛЕТКИ

Физиология и биохимия компонентов растений

5. Флавоноидные пигменты

Водорастворимые фенольные гликозиды, в которых общей основой структурной единицей является C15 — скелет флавона, составляют большую группу флавоноидных пигментов. К ним относятся антоцианы, флавоны и флавонолы: Антоцианы…

Фотосинтез как основа энергетики биосферы

4 Пигменты хлоропластов

Пигменты — важнейший компонент аппарата фотосинтеза. Изучение растительных пигментов резко ускорилось благодаря работам русского физиолога растений М. С. Цвета. Пытаясь найти способ разделения пигментов на индивидуальные вещества…

Цитология и гистология

3. Пластиды: типы, происхождение, строение и функции

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей). В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10 мкм…

Пластиды - это органоиды клеток растений и некоторых фотосинтезирующих простейших. У животных и грибов пластид нет.

Пластиды делятся на несколько типов. Наиболее важный и известный - хлоропласт, содержащий зеленый пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

Другими видами пластид являются разноцветные хромопласты и бесцветные лейкопласты.

Также выделяют амилопласты, липидопласты, протеинопласты, которые часто считают разновидностями лейкопластов.

Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

Строение пластид

Большинство пластид относится к двумембранным органоидам, у них есть внешняя и внутренняя мембраны.

Однако встречаются организмы, чьи пластиды имеют четыре мембраны, что связано с особенностями их происхождения.

Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры как тилакоиды, граны (стопки тилакоидов), ламелы – удлиненные тилакоиды, соединяющие соседние граны. Внутренне содержимое пластид обычно называют стромой.

В ней помимо прочего находятся крахмальные зерна.

Считается, что в процессе эволюции пластиды появились аналогично митохондриям - путем внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами.

Пластиды и их пигменты

Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Это не значит, что в пластиды не поступают белки и РНК из цитоплазмы. Часть генов, управляющей их функционированием, находится как раз в ядре.

Функции пластид

Функции пластид зависят от их типа.

Хлоропласты выполняют фотосинтезирующую функцию. В лейкопластах накапливаются запасные питательные вещества: крахмал в амилопластах, жиры в элайопластах (липидопластах), белки в протеинопластах.

Хромопласты, за счет содержащихся в них пигментов-каротиноидов, окрашивают различные части растений – цветки, плоды, корнеплоды, осенние листья и др.

Яркий окрас часто служит своеобразным сигналом для животных-опылителей и распространителей плодов и семян.

В дегенерирующих зеленых частях растений хлоропласты превращаются в хромопласты. Пигмент хлорофилл разрушается, поэтому остальные пигменты, несмотря на малое количество, становятся в пластидах заметными и окрашивают туже листву в желто-красные оттенки.

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы).

Они выполняют различные функции, связанные, главным образом, с синтезом органических веществ. В зависимости от окраски, обусловленной наличием пигментов, различают три основных типа пластид:

  • хлоропласты,
  • хромопласты,
  • лейкопласты.

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент хлорофилл и небольшое количество каротина и ксантофилла.

Главная функция хлоропластов — фотосинтез, в результате которого происходит образование богатых энергией органических веществ. Синтез хлорофилла обычно происходит только на свету, поэтому растения, выращенные в темноте или при недостатке света, становятся бледно-желтыми и называются этиолированными. Вместо типичных хлоропластов в них образуются этиопласты.

В клетках низших растений (водорослей) хлоропласты крупные и немногочисленные (один или несколько). Они имеют разнообразную форму (пластинчатую, звездчатую, ленточную и др.). Такие хлоропласты называются хроматофорами.

Хромопласты представляют собой пластиды, содержащие пигменты из группы каротиноидов, имеют желтую, оранжевую или красную окраску.

К каротиноидам относят широко распространенные каротины (оранжевые) и ксантофиллы (желтые). Хромопласты имеют разнообразную форму. Они образуются в осенних листьях, корнеплодах (морковь), зрелых плодах и т.д. В отличие от хлоропластов, форма хромопластов очень изменчива, но видоспецифична, что объясняется их происхождением и состоянием в них пигментов.

Лейкопласты - это мелкие бесцветные пластиды шаровидной, яйцевидной или веретеновидной формы. Они обычно встречаются в клетках органов, скрытых от солнечного света: в корневищах, клубнях, корнях, семенах, сердцевине стеблей и очень редко — в клетках освещенных частей растения (в клетках эпидермы).

Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон. Деятельность лейкопластов специализирована и связана с образованием запасных веществ. Одни из них накапливают преимущественно крахмал (амилопласты), другие — белки (протеопласты или алейронопласты), а третьи — масла (олеопласты).

Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.

Что такое пластиды: строение и функция

У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.

У высших растений также встречается деление зрелых хлоропластов, но очень редко.

Увеличение числа хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид.

Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм:

Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид.

Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней.

Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.

Социальные кнопки для Joomla

Пластиды

Строение пластид: 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - строма; 4 - тилакоид; 5 - грана; 6 - ламеллы; 7 - зерна крахмала; 8 - липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы.

Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке.

Граны связываются друг с другом уплощенными каналами - ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3).

В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез.

Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.).

Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ.

Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.).

21. Пластиды высших и низших растений

Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты - белки.

В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами.

Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты - каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко - корнеплодов.

Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды - мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты - в хромопласты (пожелтение листьев и покраснение плодов).

Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Предыдущая18192021222324252627282930313233Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Пластиды - это органоиды растительных клеток. Одним из видов пластид являются фотосинтезирующие хлоропласты. Другие распространенные разновидности - хромопласты и лейкопласты.

Все их объединяет единство происхождения и общий план строения. Различает - преобладание определенных пигментов и выполняемые функции.

Пластиды развиваются из пропластид, которые присутствуют в клетках образовательной ткани и существенно меньше по размеру, чем зрелый органоид. Кроме того, пластиды способны к делению надвое перетяжкой, что подобно делению бактерий.

В строении пластид выделяют внешнюю и внутреннюю мембраны, внутреннее содержимое - строму, внутреннюю мембранную систему, которая особенно развита в хлоропластах, где формирует тилакоиды, граны и ламелы.

В строме содержится ДНК, рибосомы, различные типы РНК.

Пластиды, содержащие пигмент хлорофилл

Таким образом, как и митохондрии, пластиды способны к самостоятельному синтезу части необходимых белковых молекул. Считается, что в процессе эволюции пластиды и митохондрии появились в результате симбиоза разных прокариотических организмов, один из которых стал клеткой-хозяином, а другие - ее органеллами.

Функции пластид зависят от их вида:

  • хлоропласты → фотосинтез,
  • хромопласты → окраска частей растения,
  • лейкопласты → запас питательных веществ.

Растительные клетки содержат преимущественно один из видов пластид.

В хлоропластах преобладает пигмент хлорофилл, поэтому содержащие их клетки зеленые. В хромопластах содержатся пигменты каротиноиды, которые придают цвет от желтого, через оранжевый к красному. Лейкопласты бесцветны.

Окраска хромопластами цветков и плодов растения в яркие цвета привлекает насекомых-опылителей и животных-распространителей семян. В осенних листьях происходит разрушение хлорофилла, в результате цвет определяется каротиноидами.

Из-за этого листва приобретает соответствующую окраску. При этом хлоропласты превращаются в хромопласты, которые часто рассматривают как конечную стадию развития пластид.

Лейкопласты при освещении способны превращаться в хлоропласты. Это можно наблюдать у клубней картофеля, когда на свету они начинают зеленеть.

Выделяют несколько видов лейкопластов в зависимости от типа накапливаемых в них веществ:

  • протеинопласты → белки,
  • элайопласты , или липидопласты, → жиры,
  • амилопласты → углеводы, обычно в виде крахмала.