Чем трехфазное напряжение отличается от однофазного. Почему в розетке две фазы: выясняем причины появления и самостоятельно устраняем В розетке показывает 2 фазы

Электроизмерительные приборы

Применялись в начале XX века в электрических распределительных сетях переменного тока. В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на (90 электрических градусов). Обычно в контурах использовались четыре линии - по две на каждую фазу. Реже применялся один общий провод , имевший больший диаметр, чем два других провода. Некоторые из наиболее ранних двухфазных генераторов имели по два полноценных ротора с обмотками, физически повёрнутыми на 90 градусов.

Впервые идеи использования двухфазного тока для создания вращающего момента были высказаны Домиником Араго в 1827 году. Практическое применение было описано Николой Тесла в его патентах от 1888 года, примерно тогда же им была разработана конструкция двухфазного электродвигателя. Далее эти патенты были проданы компании Вестингауза, которая начала развивать двухфазные сети с США. Позднее эти сети были вытеснены трёхфазными, теория которых разрабатывалась русским инженером Михаилом Осиповичем Доливо-Добровольским, работавшим в Германии в компании AEG . Однако, благодаря тому, что в патентах Теслы содержались общие идеи использования многофазных цепей, компании Вестингауза некоторое время удавалось сдерживать их развитие с помощью патентных судебных процессов.

Преимуществом двухфазных сетей было то, что они допускали простой, мягкий пуск электрических двигателей. На заре электротехники эти сети с двумя отдельными фазами были более просты для анализа и разработки. Тогда ещё не был создан метод симметричных составляющих (он был изобретён в 1918 году), который впоследствии дал инженерам удобный математический инструментарий для анализа несимметричных режимов нагрузки многофазных электрических систем.

Схема трансформатора Скотта

Двухфазные контуры обычно используют две отдельные пары токонесущих проводников. Могут использоваться и три проводника, однако по общему проводу течёт векторная сумма фазных токов, и поэтому общий провод должен иметь больший диаметр. В отличие от этого, в трёхфазных сетях при симметричной нагрузке векторная сумма фазных токов равна нулю, и поэтому в этих сетях возможно использовать три линии одинакового диаметра. Для электрических распределительных сетей требование трёх проводящих линий лучше, чем требование четырёх, поскольку это даёт значительную экономию в стоимости проводящих линий и в расходах по их установке.

Двухфазное напряжение может быть получено от путём соединения однофазных трансформаторов по так называемой схеме Скотта. Симметричная нагрузка в такой трёхфазной системе в точности эквивалентна симметричной трёхфазной нагрузке.

В некоторых странах (например, в Японии) схему Скотта используют для питания железных дорог, электрифицированных по системе однофазного переменного тока промышленной частоты. В этом случае в контактной сети чередуются только две фазы, а не три. На двухпутных дорогах пути разных направлений могут на всём протяжении питаться каждый от своей фазы двухфазной сети, что позволяет избавиться от чередования фаз по ходу следования поезда и устройства нейтральных вставок (хотя это усложняет работу станций). В России такая система не получила распространения.

Двухфазный электрический ток

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол π 2 {\displaystyle {\frac {\pi }{2}}} , или на 90°:

I 1 = I m sin ⁡ ω t {\displaystyle i_{1}=I_{m}\sin \omega t} ;

I 2 = I m sin ⁡ (ω t − π 2) {\displaystyle i_{2}=I_{m}\sin(\omega t-{\frac {\pi }{2}})} .

Φ 1 = Φ m sin ⁡ ω t {\displaystyle \Phi _{1}=\Phi _{m}\sin \omega t} ;

Φ 2 = Φ m sin ⁡ (ω t − π 2) {\displaystyle \Phi _{2}=\Phi _{m}\sin(\omega t-{\frac {\pi }{2}})} .

Двухфазные электрические сети применялись в начале 20-го века в электрических распределительных сетях переменного тока. В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на 90 градусов. Обычно в контурах использовались 4 линии - по две на каждую фазу. Реже применялся один общий провод, имевший больший диаметр, чем два других провода. Некоторые из наиболее ранних двухфазных генераторов имели по два полноценных ротора с обмотками, физически повёрнутыми на 90 градусов.

Впервые идеи использования двухфазного тока для создания вращающего момента были высказаны Домиником Араго в 1827 году . Практическое применение было описано Николой Тесла в его патентах от 1888 года , примерно тогда же им была разработана конструкция соответствующего электродвигателя . Далее эти патенты были проданы компании Вестингауза , которая начала развивать двухфазные сети с США. Позднее эти сети были вытеснены трёхфазными, теория которых разрабатывалась русским инженером Михаилом Осиповичем Доливо-Добровольским , работавшим в Германии в компании AEG . Однако, благодаря тому, что в патентах Теслы содержались общие идеи использования многофазных цепей, компании Вестингауза некоторое время удавалось сдерживать их развитие с помощью патентных судебных процессов.

Преимуществом двухфазных сетей было то, что они допускали простой, мягкий пуск электрических двигателей. На заре электротехники эти сети с двумя отдельными фазами были более просты для анализа и разработки. Тогда ещё не был создан метод симметричных составляющих (он был изобретён в 1918 году), который впоследствии дал инженерам удобный математический инструментарий для анализа несимметричных режимов нагрузки многофазных электрических систем.

Двухфазные контуры обычно используют две отдельные пары токонесущих проводников. Могут использоваться и три проводника, однако по общему проводу течёт векторная сумма фазных токов, и поэтому общий провод должен иметь больший диаметр. В отличие от этого, в трёхфазных сетях при симметричной нагрузке векторная сумма фазных токов равна нулю, и поэтому в этих сетях возможно использовать три линии одинакового диаметра. Для электрических распределительных сетей требование трёх проводящих линий лучше, чем требование четырёх, поскольку это даёт значительную экономию в стоимости проводящих линий и в расходах по их установке.

Электрический ток особо опасен для человека, к тому же он не виден. При монтаже проводки применяют провода разных цветов для безопасной и быстрой работы, буквами и цифрами обозначают сечение провода. Цветовые и символьные обозначения прописаны в стандартах, не стоит их нарушать, чтобы не подвергать свою и чужую жизни опасности.

Цветовая маркировка изоляции жил

Визуально провода отличаются друг от друга не только цветом и диаметром, но и количеством и видом жил. В зависимости от этой характеристики различают одножильные и многожильные электрические провода. Их многообразие находит свое применение в цепях переменного тока как в производственных трехфазных сетях напряжением 380В, так и в домашней однофазной сети 220В. Силовые цепи постоянного тока используют этот же стандарт электрических проводов.

Однофазная двухпроводная сеть 220В

К такой сети относится устаревший тип проводки, где в качестве жил используются алюминиевые провода в единой белой оплетке, в народе «лапша». Одна жила электрического провода – фазный проводник, вторая жила - нулевой. Однофазная двухпроводная сеть используется для обычных бытовых нужд: простых розеток и выключателей.

Проблема при монтаже одноцветной проводки заключается в затруднительном определении фазного и нулевого проводов . Наличие дополнительного измерительного оборудования поможет справиться с задачей, можно использовать мультиметр или специальную отвертку с индикатором, пробник, тестер, «прозвонку».

Проектирование однофазной двухпроводной сети разрешено ГОСТом для помещений с небольшой нагрузкой на электрическую сеть и невысокими требованиями к безопасности. В таких случаях применяют два одножильных провода или один двухжильный с жилами разных цветов.

В случае использования цельного провода одна жила имеет коричневый цвет, другая синий или голубой. Согласно общепринятой маркировке коричневая жила – это фаза, а синяя - нулевой проводник, строго не рекомендуется этот порядок нарушать. На практике встречаются фазные провода отличных от коричневого цветов: черный, серый, красный, бирюзовый, белый, розовый, оранжевый, но не синий.

Применение двух независимых одножильных проводов также требует маркировки. Можно использовать цветной по всей длине провод, например, синий - для нуля, красный - для фазы. Допустимо маркировать одинаковые по цвету провода изолентой или термоусадочными трубками разных цветов, располагая маркировку с обоих концов каждой жилы.

Применение трубки предполагает не обматывание концов, а надевание ее на провод и воздействие горячим воздухом с целью фиксации термоусадки на проводе. Для домашнего использования можно использовать любые цвета маркировочных материалов, доступные и понятные монтажнику проводки.

Однофазная трёхпроводная сеть 220В

Современные требования к монтажу электрической проводки диктуют наличие третьего провода - заземления. В этом отличие и основное преимущество однофазной трехпроводной сети.

Три электрических проводника выполняют соответствующие функции: фаза, ноль и заземление, защита от травмирования переменным током. Маркировка фазного провода остается коричневой, нулевого – синей или голубой, а провод заземления обязательно применять в оплетке желто-зеленого цвета.


Бытовая техника, соответствующая европейским стандартам безопасности, требует подключения к розеткам, имеющим заземление. Такие розетки имеют специальный контакт, к которому подводится желто-зеленый провод. Использовать этот цвет для маркировки провода фаза и ноль строго не рекомендуется, чтобы избежать возможных неприятных последствий.

Трёхфазная сеть 380В

Трехфазная сеть так же, как и однофазная, может быть с заземлением или без него. В зависимости от этого разделяют трехфазную четырехпроводную электрическую сеть напряжением 380В и трехфазную пятипроводную сеть.

Четырехпроводная сеть состоит из трех фазных проводников и одного нулевого рабочего проводника, защитный проводник заземления здесь отсутствует. В пятипроводной сети кроме трех фазных проводников и одного нулевого есть и проводник заземления.


Аналогично с двухфазной маркировкой жил, синяя или голубая жила используется для нулевого проводника , желто-зеленая – для проводника заземления. Для фазы А предусмотрен коричневый цвет, для фазы В – черный, фаза С маркируется серым цветом. Возможны исключения из правил для фазных жил , их цветовая маркировка допускает использовать другие цвета, но не синий и желто-зеленый, у которых уже имеется своя функция.

В распределении по группам однофазной нагрузки или подключении трехфазной нагрузки используются четырехжильные и пятижильные провода.

Сеть постоянного тока

Сеть постоянного тока отличается от сети переменного тока тем, что в ней присутствуют два проводника: плюс и минус. Жила плюсового проводника маркируется красным цветом, а жила минусового проводника – синим.

Практика цветового разделения проводов знакома профессионалам и любителям своего дела, активно применяется в электрике, но все же не стоит слепо доверять маркировке. Подстраховка измерительным прибором – обдуманный и взвешенный ход при монтаже электрических сетей, не стоит им пренебрегать.


Если вы электрик, нам полезно ваше мнение о статье. Напишите пожалуйста свой комментарий ниже.

Рядовой потребитель с электричеством сталкивается, ежедневно заживая
свет и включая тот или иной прибор в розетку. Выключатели
друг от друга отличаются мало, а вот с розетками все гораздо
сложнее. Попробуем разобраться, как устроена розетка.
Начнем с той, которая была изготовлена и установлена лет этак
10-15 назад. Она подключена всего к двум проводам. Изоляция
одного из проводов обязательно должна иметь голубоватую или
синюю окраску. Именно так определяется рабочий нулевой проводник.
Ток по нему идет не от источника, а от потребителя. Этот
провод вполне безобидный, и если схватиться за него, не прикасаясь
ко второму, то ничего страшного и ужасного не случится.
А вот второй провод, окраска которого может быть любой, за исключением
синей, голубой, желто-зеленой в полоску и черной, более
опасный и коварный. Называется он фазный проводник.
Дотронувшись до этого провода, можно получить хорошенький
разряд. И это не шутки, поскольку напряжение бытовой сети переменного
тока 220 В, а любой ток, напряжение которого свыше 50 В,
убивает человека за несколько секунд. Наличие напряжения на фазных
проводниках можно определить специальными индикаторами.

Однофазный трехфазный переменный ток Многие слышали такие загадочные слова, как одна фаза, три
фазы, ноль, заземление, или земля, и знают, что это важные понятия
в мире электричества. Однако не все понимают, что они обозначают.
Тем не менее знать это обязательно. Не углубляясь в технические
подробности, которые не нужны домашнему мастеру, можно
сказать, что трехфазная сеть - это такой способ передачи электрического
тока, когда переменный ток течет по трем проводам, а по
одному возвращается назад. Вышесказанное надо немного пояснить.
Любая электрическая цепь состоит из двух проводов. По одному
ток идет к потребителю (например, к чайнику), а по другому -
возвращается обратно. Если разомкнуть такую цепь, то ток идти
не будет. Вот и все описание однофазной цепи . Тот провод, по которому
ток идет, называется фазовым или просто фазой, а по которому
возвращается - нулевым или нолем. Трехфазная цепь состоит
из трех фазовых проводов и одного обратного. Такое возможно
потому, что фаза переменного тока в каждом из трех проводов сдвинута
по отношению к соседнему проводу на 120° . Более
подробно на этот вопрос поможет ответить учебник по электромеханике.
Передача переменного тока происходит именно при помощи
трехфазных сетей. Это выгодно экономически - не нужны еще
два нулевых провода . Подходя к потребителю, ток разделяется на
три фазы, и каждой из них дается по нолю. В таком виде он обычно
и попадает в квартиры и дома, хотя иногда трехфазная сеть заводится
прямо в дом. Как правило, речь идет о частном секторе, и такое
положение дел имеет свои плюсы и минусы.
Трехфазная система состоит из трех источников
электроэнергии и трех цепей, соединенных общими проводами
линии передач.
Источником энергии для всех фаз является трехфазный генератор.
Очередность подключения трехфазных двигателей
в качестве нагрузки оказывается существенной для установления
направления их вращения, то для обеспечения этой однозначности
приняты следующие условные цветовые обозначения
фаз: А - желтая изоляция; В - зеленая; С - красная и нейтраль
- черная.

Однофазный трехфазный переменный ток. При соединении звездой, кроме равного напряжения на зажимах
каждой из фаз (фазного напряжения между фазой и общим
проводом - Uф), существует и напряжение между разными фазами,
называемое линейным напряжением - Uл. Линейное напряжение
в этом случае больше фазного в √3 раз.
Если ток во всех фазах оказывается одинаковым (такая нагрузка
называется симметричной; примером может служить трехфазный
двигатель), то ток в нейтральном проводе отсутствует и этот
провод не нужен. Но другие подключаемые нагрузки бывают несимметричными,
поэтому для них нейтральный провод необходим.

Несколько реже, чем соединение звездой, в трехфазных сетях
применяют соединение треугольником. Обмотки фаз источника
электродвижущей силы при этом соединяются так, что конец
одной соединяется с началом следующей и т. д.
Преимуществом соединения фаз треугольником считается то,
что даже при несимметричной нагрузке нет необходимости использовать
четвертый провод.
Заметим, что подключение нагрузок в случае подведения
напряжения от источника способом треугольника может быть произведено
как треугольником, так и звездой.

Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке , которая там оказывается на месте нуля, что заставляет сильно призадуматься.

На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.

Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.

Немного теории.

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L ), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N ).

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.

Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.

Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом .

Совет . Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать .

А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:

1. Обрыв нуля во входном щитке дома или квартиры ;
2. Обрыв нуля на входе или внутри распределительной коробки ;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции .

1. Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара , которое постепенно переходит в обрыв.

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

2. Обрыв нуля на входе или внутри распределительной коробки.

При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.

На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.

При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.

Совет . Если провод медный, то скрутку желательно пропаять.

Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.

При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.

Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.

3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.

Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.

Лечится неисправность восстановлением поврежденного участка проводки.

Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.

В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы , Вы сможете легко определить и устранить подобную неисправность.
Удачи!

Сегодня в каждом частном доме или квартире имеется переменный ток. Но принципы работы этого рукотворного явления очевидны далеко не каждому человеку. Чтобы дать ответ на вопрос, почему в розетке две фазы, нет необходимости углубляться в курс теоретической физики. Достаточно и всем понятных примеров с работой электроприборов.

Наименования проводов в цепи

Провода в электротехнических устройствах имеют следующие специальные названия:

  • Фаза - несет в себе электрический потенциал. Именно она представляет опасность для жизни человека в случае неправильного ремонта или обращения с розеткой. Цвет проводника может быть любым, кроме голубого (чаще желтый);
  • Ноль (рабочий) - окрашен синим или голубым цветом. Используется для выравнивания фазового напряжения;
  • Защитный ноль () - имеет обычно желто-зеленую окраску. Находится в бездействии при исправной работе оборудования. В случае короткого замыкания ток начинает идти по тем участкам, где напряжения быть не должно. Защита принимает на себя это напряжение и перенаправляет его к источнику тока или в землю. Если в этот момент производятся ремонтные работы, то электрик останется в живых и ощутит лишь небольшой удар током.

Около 15 лет назад защитный ноль практически не применялся. Устаревшую схему в виде только двух проводов можно встретить в сохранившихся поныне советских электротехнических изделиях.

В этом видео электрик Василий Стульнев покажет 2 способа точного определения фазы в розетке:

Фаза в розетке: слева или справа?

Представление о том, что носитель электрического потенциала в бытовых разъемах располагается слева, является довольно распространенным заблуждением. Среди наиболее частых аргументов, приводимых адептами такой точки зрения:

  1. Об этом свидетельствует их личный жизненный опыт;
  2. Такие результаты дает «прозванивание» сетевых шнуров и встроенных в электроприборы выключателей;
  3. Якобы указание на это имеют спецификации ряда производителей газовых котлов;
  4. Любители качественного звука настаивают на подключении вилки к разъему «правильной» стороной, благодаря чему обеспечивается наиболее чистое звучание.

Но все эти доводы не имеют отношения к действительности. Для евророзеток типа «шуко» нет никакой разницы, в каком положении к ним подключен провод. Электрические разъемы в нашей и всех европейских странах не поляризованы. Лишь имеющий довольной узкое применение стандарт подключения CEE 7/5 содержит жесткие требования к порядку подсоединения приборов.

В редких случаях монтажники принимают за данность положение о том, что фаза находится справа. Но делается это исключительно для удобства измерений и предотвращения путаницы.

В итоге фаза в розетке может быть как слева, так и справа, с одинаковой вероятностью .

Как определить фазу в розетке?

Вычислить положение фазового и нулевого проводов можно как с применением предназначенных для этого приспособлений, так и без них. Далеко не у каждого человека в доме имеется необходимый инвентарь, поэтому помогут такие советы:

  • Провод, несущий ток, имеет черную или серую окраску. «Ноль» и «земля» имеют синий и зеленый цвета соответственно. Полагаться целиком на эту цветовую дифференциацию нельзя , поскольку монтажники могут без особых административных последствий для себя пренебрегать этими правилами;
  • Народные умельцы умудряются использовать в качестве индикатора простую лампочку. С этой целью к патрону прикручивают три провода: пару из них подключают в разъем, а один заземляют, примотав к чугунному радиатору отопления. Наличие свечения говорит о работоспособности проводки;
  • Известны и крайне необычные методы, когда провода подставляют под струю воды или подводят к батарее. Такие эксперименты могут закончиться очень плачевно, поэтому крайне не рекомендуются к применению.

Использование специальных приборов

Подручные методы не всегда дают надежный результат, не говоря об опасности некоторых из них для жизни. Гораздо боле надежный метод - применение измерительных устройств:

  • Индикаторная отвертка. Внутри ее корпуса находится резистор, соединенный с лампочкой. О наличии напряжения говорит световая индикация. Это наиболее дешевый и доступный для неспециалиста способ: прибор имеется в свободной продаже и стоит немногим более 30 рублей;
  • Может подойти и обычный карманный тестер . Перед началом испытаний переключатель устанавливают в режим переменного тока. Используется только один щуп (второй можно оставить в руке). При наличии тока будет показана его величина на экране прибора;
  • Измеритель данных безопасности электроустановок - профессиональный прибор, который предназначен для определения фазного и межфазного напряжения, силы и частоты тока, сопротивления и т.д. Обращение с таким устройством требует наличия особых навыков, поэтому не рекомендуется приобретать его неспециалистам.

Неисправность: двойная фаза

Если разъем работает нормально, то при прикосновении индикатора к носителю тока в розетке лампочка загорается, а при прикосновении к «нулю» - нет. В случае если световая индикация имеется в обоих случаях, это говорит о наличии фазового напряжения в обоих слотах .

Причины такой неисправности могут быть многообразны:

  • Во время проведения ремонта или переоборудования жилого помещения был случайно перебит «нулевой» провод. В этом случае нужно обесточить весь дом и убрать штукатурку в предполагаемом месте повреждения. Обнаружив место повреждения, нужно соединить части «нуля» и произвести заземление. Накладывать новый слой штукатурки нужно только после детальной проверки работы системы;
  • Неполадки в работе распределительной коробки. При снятии крышки будет видна обгоревшая проводка. Для ликвидации неисправности создают новое соединение и делают изоляцию;
  • В редких случаях корень проблем находится в силовом щите. Доступ к нему имеют только квалифицированные специалисты. Электрик детектирует контакты и соединения на предмет неисправности и устраняет их.

В сетях переменного тока направление движения электронов непрерывно изменяется. Специфика работы сетей с переменной поляризацией объясняет тот факт, почему в розетке две фазы. Одна из них несет в себе поток заряженных частиц, другая - «пустая», но необходимая для работы. В современных сетях необходимо наличие третьего провода, который обеспечивает безопасность напряжения.

Как может быть две фазы в розетке? (видео)

В данном ролике электрик Аркадий Борисов расскажет, может ли быть две фазы в розетке одновременно, что это может означать:

Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.

Элементы трехфазной сети

Основные элементы трехфазной сети - это генератор, линия передачи электрической энергии, нагрузка (потребитель). Для рассмотрения вопроса, что такое линейное и фазное напряжение в цепи, дадим определение, что такое фаза.

Фаза - это электрическая цепь в системе многофазных электрических цепей. Началом фазы является зажим или конец проводника электричества, по которому электроток поступает в него. Экспертами всегда отличались по количеству фаз электрические цепи: однофазная, двухфазная, трехфазная и многофазная.

Наиболее часто применяется трехфазное включение объектов, которое имеет существенное преимущество, как перед многофазными цепями, так и перед однофазной цепью. Различия в следующем:

  • меньшие затраты на транспортирование электрической энергии;
  • способность создания ЭДС для работы асинхронных двигателей - это работа лифтов в многоэтажных домах, оборудования в офисе и на производстве;
  • этот вид подключения дает возможность одновременно пользоваться и линейным, и фазным напряжением.

Что такое фазное и линейное напряжение?

Фазные и линейные напряжения в трехфазных цепях важны для манипуляций в щитах электрического питания, а также для работы оборудования, питающегося от 380 вольт, а именно:

  1. Что такое фазное напряжение? Это напряжение, которое определяется между началом фазы и ее концом, на практике оно определяется между нулевым проводом и фазой.
  2. Линейное напряжение - это когда измеряется величина между двумя фазами, между выводами разных фаз.

На практике напряжение фазное отлично от линейного на 60%, иными словами, параметры линейного напряжения в 1,73 раза больше фазного напряжения. Трехфазные цепи могут иметь линейного напряжения - 380 вольт, что дает возможность получения фазного напряжения в 220 В.

В чем отличие?

Для общества понятие «межфазное напряжение» встречается в многоквартирных, высотных домах, когда первые этажи предусматриваются под офисные помещения, а также в торговых центрах, когда объекты строения подключаются несколькими силовыми кабелями трехфазной сети, которые обеспечивают напряжение 380 Вольт. Такой вид подключения дома обеспечивает работу асинхронных двигателей подъемников, работу эскалатора, промышленного холодильного оборудования.

На практике делать разводку трехфазной цепи достаточно просто, учитывая, что в квартиру идет фаза и ноль, а на офисное помещение - все три фазы + нейтральный провод.

Сложности линейной схемы подключения заключаются в трудности определения в процессе монтажа проводника, что может привести к аварии оборудования. Отличается схема в основном между фазными и линейными подключениями, соединениями обмоток нагрузки и источника электропитания.

Схемы подключения

Есть две схемы подключения источников напряжения (генераторов) в сеть:

  • «треугольником»;
  • «звездой».

Когда выполняется подключение «звездой», начало обмоток генератора соединены в одной точке. Оно не дает возможности увеличения мощности. А подключение по схеме «треугольник» - это когда обмотки соединяются последовательно, а именно, начало обмотки одной фазы соединяется с концом обмотки другой. Это дает способность в три раза увеличить напряжение.

Для лучшего понимания схем подключения специалисты дают определение, что такое фазные и линейные токи:

  • линейный ток - это ток, который протекает в подводнике соединения источника электрической энергии и приемника (нагрузки);

  • фазный ток - это ток, протекающий в каждой обмотке источника электрической энергии или в обмотках нагрузки.

Линейные и фазные токи имеют значение, когда есть несимметричная нагрузка на источник (генератор), это часто встречается в процессе подключения объектов к электроснабжению. Все параметры, относящиеся к линии, - это линейные напряжения и токи, а относящиеся к фазе, - параметры фазных величин.

Из соединения «звезда» видно, что линейные токи имеют такие же параметры, как и фазные. Когда система симметрична, необходимость в нейтральном проводе отпадает, на практике он поддерживает симметрию источника, когда нагрузка несимметрична.

Из-за несимметричности подключаемой нагрузки (а на практике это происходит с включением в цепь осветительных устройств) надо обеспечить независимую работу трем фазам цепи, это можно сделать и в трехпроводной линии, когда фазы приемника соединяются в треугольник.

Специалисты обращают внимание на тот факт, что когда понижается линейное напряжение, изменяются параметры фазного напряжения. Зная значение междуфазное напряжение, можно легко определить величину фазного напряжения.

Как сделать расчет линейного напряжения?

и закон Ома:

Когда выполняется разветвленная система снабжения объекта электроэнергией, иногда есть необходимость вычислить напряжение между двумя проводами «ноль» и «фаза»: IF=IL, что говорит о равности параметров фазных и линейных. Соотношение между фазными проводами и линейными можно найти, используя формулу:

Находящий элемент соотношений напряжений и оценки системы электроснабжения специалистами выполняется по линейным параметрам, когда известно их значение. В системах электроснабжения из четырех проводов выполняется маркировка 380/220 вольт.

Вывод

Используя возможности трехфазной цепи (четырехпроводниковая цепь), можно по-разному выполнять подключения, что дает возможность ее широкого применения. Специалисты считают трехфазное напряжение для подключения универсальным вариантом, так как оно дает возможность подключать нагрузку большой мощности, жилые помещения, офисные здания.

В многоквартирных домах основными потребителями являются бытовые приборы, рассчитанные на сеть 220 В, по этой причине важно сделать равномерное распределение нагрузки между фазами цепи, это достигается включением квартир в сеть по шахматному принципу. Отличается распределение нагрузки частных домов, в них она выполняется по величинам нагрузки на каждую фазу всего домашнего оборудования, токами в проводниках, проходящими в период максимального включения приборов.

Менструальный цикл состоит из трех частей, каждая из которых выполняет определенную функцию. В первой фазе происходит созревание яйцеклетки, организм готовится к возможному зачатию. Вторая фаза отвечает за овуляцию и процесс оплодотворения вышедшей из фолликула яйцеклетки. Завершающим этапом служит лютеиновая фаза. Она характеризуется увеличением уровня прогестерона. 2 фаза менструального цикла – самая важная в период планирования беременности.

Основные фазы цикла

Репродуктивная система женщины осуществляет свою работу по определенному алгоритму. Принято выделять 2 фазы цикла, но существует и третья – овуляторная. Она является основополагающей и отличается цикличностью между двумя периодами менструального цикла. Каждой женщине репродуктивного возраста следует знать, что такое вторая фаза и какие нюансы она в себе содержит.

  1. Фолликулярная фаза цикла – это подготовительный период организма к овуляции. Под воздействием эстрогенов фолликулы и эндометрий в этот период увеличиваются. Ближе к овуляции начинает визуализироваться доминантный фолликул. Симптоматика в этот период не особо выражена. Влагалищные выделения прозрачные и жидкие. Может присутствовать небольшая болезненность в животе.
  2. Овуляция – это пик фертильности женщины. При среднестатистическом 28-дневном цикле она происходит на 14-15 день. В этот период яйцеклетка выходит из фолликула и дожидается встречи со сперматозоидом. Сколько длится вторая фаза после овуляции, зависит от индивидуальных особенностей организма. На успех зачатия оказывает влияние не только качество яйцеклетки, но и проходимость маточных труб, а также толщина эндометрия.
  3. Лютеиновая фаза начинается после овуляции. На месте лопнувшего фолликула образуется желтое тело, продуцирующее прогестерон. Под его воздействием эндометрий готовится к имплантации эмбриона. Если она не происходит, уровень прогестерона резко снижается, провоцируя приход месячных. Пик прогестерона отмечается на 22 день. Затем он планомерно снижается.

Вторая фаза менструального цикла

Вторая фаза цикла отвечает за репродуктивное здоровье женщины. Именно в этот период женщина может забеременеть. Овуляция отсутствует у беременных и кормящих женщин, а также в подростковом возрасте и при климаксе. В норме овуляция происходит до 10 раз в год. Два менструальных цикла за этот период могут быть ановуляторными. Для того чтобы овуляция произошла необходим баланс гормонов ЛГ и ФСГ. Они вырабатываются гипофизом.

Читайте также 🗓 Почему задержка на 10 дней - причины

Принято считать, что наличие месячных является гарантом правильного протекания овуляции. На самом деле это не так. Месячные могут приходить, вне зависимости от того, состоялась овуляция или нет. Подтвердить ее наличие помогают специальные тесты, реагирующие на увеличение уровня ЛГ в моче. Но более достоверным способом определения овуляции считается ультразвуковой мониторинг. С его помощью можно проследить за ростом яйцеклетки и поймать точный день ее выхода в брюшную полость. Такой метод проводят в диагностических целях и для увеличения шансов зачатия при планировании беременности.

Сколько длятся фазы цикла

У каждой женщины разная продолжительность менструального цикла. Она зависит от уровня гормонов, наследственности и образа жизни. Продолжительность первого этапа цикла варьируется от 7 до 14 дней. При гормональных нарушениях могут быть значительные отклонения от нормы.

Сколько дней длится продолжительность второй фазы цикла, определить невозможно. Точные данные можно получить только в лабораторных условиях. В среднем эта цифра колеблется от нескольких часов до 3 суток. От того, сколько длится вторая фаза цикла, зависит степень фертильности женщины.

Лютеиновый период, вне зависимости от длины менструального цикла, всегда длится две недели. Эта информация позволяет составить прогноз фертильности женщины на основе анализа нескольких циклов. Чтобы узнать день овуляции, от продолжительности месячных отнимают 14 дней. Полученное число показывает день цикла, в который произошел выход яйцеклетки из капсулы фолликула.

Что происходит во время второй фазы

Вторая фаза менструального цикла – наиболее благоприятное время для половых актов при планировании беременности. В этот период женщина начинает замечать изменения, происходящие в ее организме. Они выражаются в следующем:

  • пульсирующая боль в одном или обоих яичниках;
  • жидкие выделения, напоминающие по консистенции яичный белок;
  • усиление сексуального влечения;
  • резкие перепады настроения;
  • незначительное увеличение груди.

Описанные симптомы возникают в результате резкого увеличения гормонов. Некоторые женщины не замечают никаких существенных изменений в этот период. Все зависит от индивидуальных особенностей организма.

Количество дней второй фазы менструального цикла – не более трех. Если в этот период сперматозоид не успел проникнуть в яйцеклетку, то она погибает. Под конец завершительного этапа яйцеклетка выходит из полости матки вместе с менструальной кровью и базальным слоем эндометрия.

Нарушения второй фазы цикла

Вторая фаза определяет дальнейшее функционирование репродуктивной системы. Если овуляция по какой-то причине не состоялась, происходят нарушения третьей фазы. Это отражается на регулярности менструального цикла и самочувствии женщины. Причины нарушений могут быть следующими:

  • стрессовые ситуации;
  • гормональные отклонения;
  • малый овариальный резерв;
  • механические повреждения гипофиза;
  • скудное питание;
  • эндокринные заболевания;
  • утолщенная оболочка яичников.

Главный этап 2 фазы цикла – разрыв стенок фолликула. Если этого не происходит, то яйцеклетка не покидает его пределы. Она регрессирует или перевоплощается в кисту. В первом случае женщина может не подозревать о патологии, поскольку регулярность менструаций остается прежней. При кистозных образованиях происходит задержка месячных, поскольку снижения прогестерона в нужное время не происходит.

Короткая лютеиновая фаза

Длительность лютеиновой фазы в норме составляет две недели. Если она короче 10 дней, то речь идет о патологии. Короткая лютеиновая фаза приводит к бесплодию. В этом случае функционирование желтого тела прекращается раньше времени. Это делает процесс имплантации невозможным.

К возможным причинам патологии относят инфекционные заболевания, перенесение серьезных травм, хронические воспалительные процессы и нарушение работы щитовидной железы. Чтобы удлинить продолжительность лютеинового периода, женщине назначают гормональные препараты.

Определить отклонение несложно. Для этого следует обратить внимание на то, сколько дней длится цикл. Если его продолжительность меньше 28 дней, то необходимо обратиться к гинекологу за консультацией. Для подтверждения диагноза проводится УЗИ-мониторинг в разные дни цикла. Также сдается кровь на гормоны.

Длинная лютеиновая фаза

Вторая фаза менструального цикла может спровоцировать и увеличение продолжительности лютеиновой фазы. Это способствует гормональной перестройке, что оказывает влияние на вес женщины, ее самочувствие и работу внутренних органов. Патология нередко возникает на фоне повышенного инсулина. Он вызывает повышение тяги к сладкой пище.

Удлинение секреторного этапа указывает на развитие доброкачественной опухоли или кисты. Она провоцирует задержку месячных, не позволяя прогестерону снизиться до необходимых размеров. Если причина патологии кроется в фолликулярной кисте, то женщине назначают специальные препараты. Киста рассасывается, и месячные начинаются.

Если проблема кроется в новообразованиях, которые не только не исчезают, но и увеличиваются со временем, то может потребоваться хирургическая помощь. При образованиях маленького размера проводят лапароскопию. Она отличается быстрым восстановительным периодом и легкостью проведения. Во время операции в брюшине делают проколы, через которые вводят медицинские инструменты. Полостная операция проводится тогда, когда опухоль достигает слишком большого размера.